Arthropod Symbiosis and Symbiont-based Control Strategies in European Union

Kostas Bourtzis

Department of Environmental and Natural Resources Management,
University of Ioannina, Agrinio,
GREECE

Synopsis of the Presentation

Part A: EU Symbiosis Actions

Part B1: Introduction to Wolbachia Biology

Part B2: Wolbachia-induced Cytoplasmic Incompatibility

Part B3: Ongoing studies and Conclusions

Part A: EU Symbiosis Actions

EU COST Action FA0701: Arthropod Symbioses: from fundamental studies to pest and disease management

Symbiosis

Anton de Bary, 1879:

"The living together of dissimilarly organisms"

Symbiotic bacteria in arthropods

- Supplement nutrition deficiencies
- ☐ Influence sex ratio
- ☐ Help cope with environmental factors

Genomics and Metagenomics

Symbionts:

Buchnera, Blochmannia, Blattabacterium, Serratia symbiotica, Rickettsia species, Wolbachia, Wigglesworthia glossinidia, Sodalis glossinidius,

Arthropods:

Many species including mosquito species, aphid, tsetse fly, Rhodnius bug,

Metagenomes:

Bemisia tabaci, Bactrocera oleae,

Symbiont-based Control Strategies (SCS)

- ☐ Use symbionts for pest and disease management
- ☐ Ongoing efforts:
 - Pierce disease
 - Fiji disease virus
 - Chagas disease
 - Trypanosomiasis
 - Phytoplasmas
 - Malaria, Dengue virus, Lymphatic filariasis
 - > Aphids, Whiteflies, Leafhoppers, Tephritids
 - **>**

Active Projects

- Many international collaborations
- □ >150 funded projects at national level

Study both basic and applied aspects of Arthropod Symbioses

Reasons for the action - COST is required to coordinate research of EU scientists

Crossing research boundaries: to date, research on Arthropod Symbioses and SCSs has been fragmented and there is a need to bring together people working on various systems

Combining forces: to develop the tools required for implementing SCS and/or to characterize and exploit arthropod symbiosis and metagenomes demands experts from many fields. COST will improve the likelihood of these advances being made and carried into biotechnology

Providing cross-border training: Short term visits, personnel exchange, training and dissemination activities will improve scientific contact and collaboration between laboratories and countries

Main objectives

Overall: Develop arthropod-symbiosis into commercially available products to benefit society

- ✓ Promote data collection on arthropod symbiosis
- Support arthropod pest control programs on major pests and disease vectors
- ✓ Develop alternative control methods against pests and disease vectors
- Explore metagenomes of arthropods to identify novel products
- Promote public discussion on the legal and regulatory issues associated with SCS implementation

Secondary objectives

- ☐ Provide information on the diversity of symbiotic bacteria
- ☐ Provide information on host-symbiont interactions
- ☐ Develop and deliver research tools
- ☐ Provide resources for the scientific community
- Enhance public communication

Scientific program

Five specific working groups (WGs):

WG1 - Arthropod symbiont diversity

WG2 – Arthropod-symbiont metagenomes

WG3 - Host-symbiont interactions

WG4 - Symbiont-based control strategies

WG5 - Ethical, regulatory & commercial aspects of SCS

Each WG has a well-defined focus and 2-5 tasks

Organization and Dissemination Plan

☐ MC (chair, vice chair, WG co-ordinators) □ Regular meetings ■ Workshops & Conferences ☐ STSMs ☐ Joint activities (IOBC, IBMA, COST862)

Workshops

- "Assessment of arthropod symbiont diversity"
- "Symbiont dynamics: understanding symbiont population biology and its applications"
- "Joint meeting with COST 862"
- "Symbiont-based control strategies and commercialization"
- "Arthropod metagenomics and applications"
- "Pathogen-symbiont interactions in arthropod vectors"
- "Safety, registration and public perception"

Benefits

- Contribute to the discovery of novel gene products with potential for commercial exploitation
- Facilitate technology transfer from academia to the private sector
- Improve the competitiveness of European biological control SMEs
- Facilitate international contact between laboratories
- Provide a framework for young scientists to get trained in specialized area and connect with the private sector and academia
- Support and encourage scientific collaboration between laboratories, countries and companies

Target groups

- □ Academia results on the arthropod symbiont diversity, microbial genomes, arthropod metagenomes, host-symbiont interactions and novel technologies for biological control will advance the research activities in diverse fields of life sciences
- □ Industry Biological control (SCS for controlling arthropod pests and disease vectors); Pharmaceutical (novel products identified by [meta]genomics)
- □ The public increased awareness about risks and benefits of SCS as well as environmentally-friendly control strategies of arthropod pests and diseases; reduced use of pesticides

Participants

- ◆ 100 experts and 4 SMEs
- ♦ 18 EU and 5 non-EU countries

Part B1: Introduction to Wolbachia Biology

Wolbachia interacts with host microtubules

Host Distribution of Wolbachia Strains

Arthropods

- > Insects
- Mites
- Isopods
- > Spiders
- Springtails

Nematodes

> Filarial worms

Not infected:

- > many species of agricultural importance (e.g. *Bactrocera oleae*)
- > many species of medical importance (e.g. Anopheles gambiae)
- > many species of environmental importance (e.g. *Dendroctonus* spp.)

Wolbachia during Drosophila spermatogenesis

[Veneti et al. (2003), Genetics 164: 545-552; Clark et al. (2002), Mech. Devel. 111: 3-15; Clark et al. (2003), Mech. Devel. 120: 85-98]

Wolbachia during Drosophila oogenesis

D. simulans (wRi)

D. melanogaster (wMel)

D. simulans (wNo)

oskar-like mRNA pattern

bicoid-like mRNA pattern

Wolbachia during Drosophila embryogenesis

[Veneti et al. (2004) Appl. Env. Microbiol. 70: 5366-5372]

Wolbachia-Induced Reproductive Abnormalities

Wolbachia induce a number of reproductive alterations, such as:

- Feminization
- Parthenogenesis
- Male-killing
- Cytoplasmic Incompatibility

- Spreading
- Curing Antibiotics

Uni-Directional CI

uninfected

infected

Bi-Directional CI

Infected A

The mechanism of cytoplasmic incompatibility

- Unknown molecular mechanism
- Modification Rescue model
- Modification (imprinting) during spermatogenesis
- Rescue during fertilization/early embryogenesis

Major Goals of Bourtzis' Lab

➤ To dissect host-Wolbachia symbiosis towards the elucidation of the mechanism of Cytoplasmic Incompatibility (CI)

> To use the mechanism of CI for applied purposes

Part B2: Wolbachia-induced CI

Wolbachia and Applied Biology

For example:

- 1. Asexuality
- 2. As an expression vector
- 3. As a tool for the modification of population age structure
 - 4. As a spreading mechanism
 - 5. As a tool for population suppression of insect pests

Wolbachia-induced Cytoplasmic Incompatibility as a tool to suppress med fly populations

Wolbachia transfer to the med fly Ceratitis capitata

- > The entire work was done at the IMBB, Crete.
- Recipient: Benakeion strain
- Donor: Rhagoletis cerasi
 - Austria (wCer1 + wCer2)
 - Sicily (wCer1 + wCer3 + wCer4)
 - collaborators: M. Riegler and C. Stauffer
- > Two stably transinfected lines: 88.6 (wCer2) and S10.3 (wCer4).
- > 100 % infection rates (for over 6 years now, 76 generations).

Wolbachia Distribution in Transinfected Medfly

[Zabalou et al. (2004), PNAS, 101: 15042-15045]

Cl assays with transinfected Ceratitis capitata

Cross (females x males)	Embryos scored	Embryonic mortality (%)	
A)			
Uninfected Benakeion x WolMed 88.6 (wCer2)	3000	100 ± 0	
Uninfected Benakeion x WolMed S10.3 (wCer4)	3000	100 ± 0	
WolMed 88.6 (wCer2) x Uninfected Benakeion	3000	16.73 ± 0.68	
WolMed S10.3 (wCer4) x Uninfected Benakeion	3000	32.03 ± 0.85	
WolMed S10.3 (wCer4) x WolMed 88.6 (wCer2)	3000	100 ± 0	
WolMed 88.6 (wCer2) x WolMed S10.3 (wCer4)	3000	100 ± 0	
WolMed 88.6 (wCer2) x WolMed 88.6 (wCer2)	3000	64.77 ± 0.87	
WolMed S10.3 (wCer4) x WolMed S10.3 (wCer4)	3000	67.25 ± 0.87	
Uninfected Benakeion x Uninfected Benakeion	3000	12.17 ± 0.60	
B) * WolMed S10.3 tet x WolMed S10.3 tet	1890	23.44 ± 0.97	
** WolMed S10.3 tet x WolMed S10.3 tet	3000	11.80 ± 0.59	
* WolMed 88.6 tet x WolMed 88.6 tet	2283	25.10 ± 0.91	

[Zabalou et al. (2004), PNAS, 101: 15042-15045]

Suppression of medfly populations using Wolbachiainduced CI

Transinfected Males Ratio

Number of adults	300	300	300	306	290	520
Number of eggs scored	3000	3000	2097	1688	858	700

Part B3: Conclusions

Incompatible Insect Technique (I.I.T.)

- Based on the mechanism of Wolbachia-induced CI
- > Analogous to S.I.T.
- Effective sexing system is necessary
- Environmentally friendly technology
- Low technological input
- Low cost technology
- Higher competitiveness of released males
- Successful applications in the past (C. pipiens in India, a WHO project)

Acknowledgements

- University of loannina
- George Tsiamis
- Aggeliki Saridaki
- Panos Ioannidis
- Panos Sapountzis
- Stefanos Siozios
- > IMBB
- Babis Savakis
- Sofia Zabalou
- Zoe Veneti
- Aggeliki Apostolaki
- Ioannis Livadaras
- University of Crete
- Aris Economopoulos
- Marianna Theodorakopoulou

- **► University of Vienna**
- Markus Riegler
- Christian Stauffer
- > FAO / IAEA
- Alan Robinson
- Gerald Franz
- > Funding
- European Union
- COST
- FAO / IAEA
- Greek Secretariat for Research and Technology
- Greek Ministry of Education
- Empirikion Foundation